Non-commutative Gröbner Bases for Commutative Algebras

نویسندگان

  • DAVID EISENBUD
  • IRENA PEEVA
  • BERND STURMFELS
چکیده

An ideal I in the free associative algebra k〈X1, . . . ,Xn〉 over a field k is shown to have a finite Gröbner basis if the algebra defined by I is commutative; in characteristic 0 and generic coordinates the Gröbner basis may even be constructed by lifting a commutative Gröbner basis and adding commutators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

XIDEAL Gröbner Bases for Exterior Algebra

The method of Gröbner bases in commutative polynomial rings introduced by Buchberger (e.g. [1]) is a well-known and very important tool in polynomial ideal theory, for example in solving the ideal membership problem. XIDEAL extends the method to exterior algebras using algorithms from [2] and [3]. There are two main departures from the commutative polynomial case. First, owing to the non-commut...

متن کامل

Computation of Non-commutative Gröbner Bases in Grassmann and Clifford Algebras

Tensor, Clifford and Grassmann algebras belong to a wide class of non-commutative algebras that have a Poincaré-Birkhoff-Witt (PBW) “monomial” basis. The necessary and sufficient condition for an algebra to have the PBW basis has been established by T. Mora and then V. Levandovskyy as the so called “non-degeneracy condition”. This has led V. Levandovskyy to a re-discovery of the so called G-alg...

متن کامل

Degree bounds for Gröbner bases in algebras of solvable type

We establish doubly-exponential degree bounds for Gröbner bases in certain algebras of solvable type over a field (as introduced by Kandri-Rody and Weispfenning). The class of algebras considered here includes commutative polynomial rings, Weyl algebras, and universal enveloping algebras of finite-dimensional Lie algebras. For the computation of these bounds, we adapt a method due to Dubé based...

متن کامل

Noncommutative Gröbner Bases for Almost Commutative Algebras

Let K be an infinite field and K〈X〉 = K〈X1, ..., Xn〉 the free associative algebra generated by X = {X1, ..., Xn} over K. It is proved that if I is a two-sided ideal of K〈X〉 such that the K-algebra A = K〈X〉/I is almost commutative in the sense of [3], namely, with respect to its standard N-filtration FA, the associated N-graded algebra G(A) is commutative, then I is generated by a finite Gröbner...

متن کامل

Gröbner–Shirshov Bases for Irreducible sln+1-Modules

In [10], inspired by an idea of Gröbner, Buchberger discovered an effective algorithm for solving the reduction problem for commutative algebras, which is now called the Gröbner Basis Theory. It was generalized to associative algebras through Bergman’s Diamond Lemma [2], and the parallel theory for Lie algebras was developed by Shirshov [21]. The key ingredient of Shirshov’s theory is the Compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997